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Critical behavior of semi-infinite random systems at the special surface transition
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We use a three-dimensional massive field theory up to the two-loop approximation to study the critical
behavior of semi-infinite quenched random Ising-like systems at the special surface transition. Besides, we
extend up to the next-to leading order, the previous first-order results afdfexpansion obtained by Ohno
and OkabéPhys. Rev. B46, 5917(1992]. The numerical estimates for surface critical exponents in both cases
are computed by means of the Paatelysis. Moreover, in the case of the massive field theory we perform
PadeBorel resummation of the resulting two-loop series expansions for surface critical exponents. The most
reliable estimates for critical exponents of semi-infinite systems with quenched bulk randomness at the special
surface transition, which we can obtain in the frames of the present approximation schemg,=are
—0.238,A,=1.098, », =—0.104, B,=0.258, y,,=0.839, y,=1.426, 6;=6.521, andé,;=4.249. These
values are different from critical exponents for pure semi-infinite Ising-like systems and show that in a system
with quenched bulk randomness the plane boundary is characterized by a new set of critical exponents at the
special surface transition.
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I. INTRODUCTION 28] that each surface universality class is defined by the bulk
universality class and specific properties of a given bound-
Investigation of the critical behavior of real physical sys-ary. At the present time three surface universality classes,
tems is of considerable theoretical and experimental interesgalled ordinary, special, and extraordinary, are known
Real physical systems are usually characterized by the pref25.28- They correspond to the respective surface transitions
ence of different kinds of defects and impurities that may behat occur at the bulk critical poirng=mj. [29] and are
localized inside the bulk or at the boundary. characterized by different fixed points
Historically, the systematic investigation of the quenched CHOd | on XSSP SP ok eXU_ 1.1
disordered systems was initiated in the seminal works by 0 0 o 0 ' '
Harris, Lubensky1,2], and Khmel'nitskii[3]. The study of Here ¢y is so called “bare surface enhancement,” which
the Ising-like systems among the whole class ohO§ym-  measures the enhancement of the interactions at the surface,
metric n-vector models ird dimensions is of special interest, and (m3,co)=(m3.,c5P) is a multicritical point, called spe-
because they satisfy the Harris criterietj, which states that cial point.
the presence of randomness is relevant for such pure systemsThe influence of quenched surface disorder on the surface
that have a positive specific heat exponanfThe introduc-  critical behavior was investigated by analytic calculations
tion of the bulk dilution into a system shifts the critical tem- [30,31 and Monte Carlo simulationd23,32. General
perature of the bulk phase transition and drives the system tiorelevance-relevance criterion of the Harris-type for short-
another “random” fixed point in which unconventional scal- range as well as for long-range correlated quenched surface
ing behavior is observed. It has been confirmed by the Wildisorder was derivefB0]. In the case of special transition it
son’s renormalization group andexpansiong1-3,5-7, a  has been demonstratgg0,33 that the fixed point describing
three-dimensional massive field thedB8~10], experiments the surface critical behavior of three-dimensional pure sys-
[12—14], and Monte Carlo simulatior[45,16 that the criti-  tems is stable with respect to short-range correlated
cal behavior of three-dimensional disordered Ising-like sysquenched surface disorder. Thus, the weak short-range
tems is characterized by a new set of critical exponglits  quenched surface disorder is irrelevant for three-dimensional
The Ising model atl=2 is a marginal case because in this systems, but long-range correlated enhancement disorder
casea=0 and the corresponding logarithmic corrections tocould become relevant iti<4 dimensions. Another interest-
the power law singularities of the pure model take place, aing example is the case of random field quenched surface
was confirmed in a series of papgls8—23. disorder at the special transition of an Ising-like critical sys-
The presence of a surface leads to the appearance of agm. In this case the disorder also becomes relevant for
ditional problems in critical phenomena. The most generak4 dimensiong30].
review of critical behavior at surfaces and the list of related What happens with the surface critical behavior, when the
references are given in Ref24-24. It is well known[24—  quenched disorder is introduced in the bulk? The answer for
this question could be found in our recent paf#4], where
we quantitatively confirm the previous general expectation
*Email address: pylyp@ph.icmp.lviv.ua by Ohno and Okabg35] that the introduction of quenched
"Email address: huck@phys.sinica.edu.tw bulk randomness in semi-infinite systems bounded by a
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plane surface affects the surface critical behavior of these Il. MODEL
systems. From the results obtained in the frames of the mas-

|S|ve field theory directly |rr]d=3fd|mensr|]0nshup to f{hel WO- ) andau-Ginzburg-Wilson Hamiltonian with cubic anisotropy
oop approximation, we have found that the critical €Xpo-yefined in semi-infinite space for description of critical be-

nents of quenched dilute semi-infinite systems at thgayior of quenched dilute semi-infinite Ising-like systems at
ordinary transitior{ 34] differ from the surface critical expo-  the ordinary transition in the replica limit—0. The critical
nents of the pure semi-infinite systerf@3]. Besides, we pehavior at the special surface transition has its own pecu-
have shown that to order, the \e expansion for surface |iarities. In the general case effective Hamiltonian for such
critical exponentsy and , gave negative value of the cor- systems must involve terms to describe surface interactions
relation function critical exponengy for the random bulk [24,25,27,45,3D Thus, the common form of the effective
Ising system according to the scaling relatiop=27%, Hamiltonian to describe the critical behavior of quenched
— 7). It confirms the well known fact that the second orderdilute semi-infinite Ising-like systems in the replica linmt
of the \/e expansion is not enough to give correct positive—0 can be written as
value of bulk critical exponeny [6,7,36—4Q. The obtained B 1 1 . 0
results[34] hz_ave shown that.these k_mds of def|C|e_nC|es_ do H(J’):J dzJ dd—lr{_|v$|2+_mg|$|2+ —Uoz ¢i4
not appear in the calculations using the massive field- 0 2 2 4! 5=
theoretic approach directly id=3 dimensiong41].
All these have stimulated us to study the critical behavior i 21272
. - L + = Uo(|9]%)
at the special surface transition occurring in quenched bulk 4!
dilute semi-infinite systems bounded with a plane surface. It .
should be mentioned that the problem of investigation of the It should be mentioned that heg is an n-vector field
critical behavior at the special surface transition is very im-with the components,; ,i=1, ... n defined on a half-space
portant from such point of view that at some conditions itRiE{Xz(r,z) e RYreRY"1,z=0} bounded by a plane free
may be reduced to the problem of the adsorptio® @foly-  surface atz=0. The fields ¢(r,z) satisfy the Neumann
mers on a wal[42,43. boundary conditiori27,45, so that we have,¢(r,z)=0 at
Two main analytic methods have been used for the invesz=0. This Hamiltonian takes into account surface interac-
tigation of the critical behavior of the systems with quenchedijon in the form of an additional ternd fd® rc,2. The
randomness. One of them is the renormalization-gi®®  model defined by Eq(2.1) is restricted to translations paral-

approach introduced by Harris and LubensRy. This ap-  |e| to the boundary surface. Thus, only parallel Fourier trans-
proach involves applying the RG transformation to the ranformations ind— 1 dimensions take place.

dom system directly and subsequent averaging over disorder.

In the previous work[34], we presented an effective

1 -
+ Ef d9 trcq . (2.3

Ohno and Okabg35] employed this method to analyze the ' pENORMALIZATION OF THE CORRELATION

influence of randomness on the surface critical behavior at FUNCTION

d=4- e dimensions in the frames afe expansion. _ _ _
Another technique introduced by Grinstein and Lutfgr The correlation function of the model of E(.1), which

involves first removing the randomness by averaging, andvolvesN fields ¢(x;) at distinct pointsq; (1<i<N) in the
subsequent employing the renormalization group. They corbulk and M fields ¢(r;,z=0)=¢(r;) at distinct surface
sidered ammn-vector model and showed that analytic con- points with parallel coordinateg(1<j<M), has the form
tinuation of this model tan=0 is equivalent to a model of a N M
randomm-component spin system. An elegant derivation of
this equivalence has been given by Emgiy]. We mainly G(N'M)({X‘}{ri}): < Iﬂl ¢(Xi)jﬂl ¢S(r1)>' 3.1
use this technique to treat randomness.

The present paper is dedicated to the investigation of th&@he corresponding full free propagator in the representa-
critical behavior at the special surface transition in semition is given by
infinite, quenched dilute Ising-like systems at the bulk “ran-

dom” critical point directly ind=3 dimensions using the G(p.2.2')— 1 o rolz 7| Meﬂ(o(ﬁz,)
massive field theory up to the two-loop approximation. Be- " 2kq Cot Ko '
sides, we extend up to the next-to leading order of {tee (3.2

expansion, the previous first-order results obtained by Ohno 5 ) i
and Okabd35]. The numerical estimates for critical expo- where ko= \p +m02 with p being the value of parallel mo-

nents of the special surface transition in both cases are cdlP€ntump associated witld—1 translationally invariant di-
culated using extensive Padaalyses. Moreover, in the case 'ections in the system. The first term in E8.2) corresponds

of the massive field theory we perform PaBerel resumma- t0 usual free bulk propagator in coordinate space, between
tions of the resulting two-loop series expansions and obtaite¢ pointsx=(r,z) andx’=(0.’), and the second one, so
quite reasonable and reliable numerical estimates for surfagelled “surface” term, depends on the distance between the
critical exponents. The obtained results confirm that in thepoint x and its “mirror image”x’=(0,—z').

case of quenched bulk randomness in semi-infinite systems The formulation of the randomness problem introduced
the new set of the surface critical exponent appears. by Grinstein and Luther indicates that the renormalization
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process for the random systems is similar to that for the

J m ¢
“pure” case[25,33. As it is known, in the theory of semi-  Zj=2m—[G*I(p)] 7|  =lm———[G(*I(p)] "
infinite systems the bulk fields(x) and the surface field ap oo p—oP P
¢<(r) should be reparametrized by differani-finite renor- (3.7

malization factorsZ 4(u,v) andZ,(u,v), o _ - _
The renormalizatiorZ factors in the critical region have the

() =Z32pr(x) and  ¢y(r)=Z 21 psr(r). scaling behavior
The renormalized correlation function involvig bulk and Zyoem?,
M surface fields with lI,M) #(0,2) can be written as s sp
Z5Paem1, (3.9

MM 0;m,u,v,c o . .
RO v:C) wherem is identified as the inverse bulk correlation length

=Z;(MM)’ZZ[M’ZG(N'M)(O;mo,uo,vo,Co). & Lot t=(T—T,)/T.. Here 5 is the standard bulk corre-
3.3 lation exponent and exponeny;P is specific for our
(33 quenchedandom semi-infinite system. The exponentand

Sp H H _
In order to obtain the critical exponewﬁ”that characterizes gl arlsgkfrom I?_G a;rgumenltst_of e}n '”t*_‘og‘éggf’ nEe oug gallan
surface correlations at special transition, it is sufficient to ymanzik equation for correlation functio . Eq.(3.3),

consider a two-point correlation function of surface fields[48:33
GO2(p)=(e(p,z=0)¢(~p,z'=0)). P P

It should be mentioned that the renormalized mass ng=m——InZ, , 7P’=m—nz; . (3.9
coupling constantsi, v, and the renormalization factd, Jm FP Jm FP

are fixed via the standard normalization conditions of the . . : . . 2)
infinite-volume theory[46,5,41,47. In order to remove The simple scaling dimensional analysis®§'® and mass

short-distance singularities of the correlation funct®ff-? ~ dependence ot f?;:t(?rs' Eq/(3.8), defines the surface corre-
located in the vicinity of the surface, the surface-lation exponenty™ via
enhancement shific is required. In accordance with this the Sp_ s
new normalization condition should be introduced for the K
def|n|t|on. of .the surface-enhancemept shift and surfa}ce From Egs(3.7), (3.9), and(3.10, we obtain for surface cor-
renormalization factoiZ,. We normalize the renormalized ; sp

. . e relation exponenty;®,
surface two-point correlation function in such a manner that
at zero external momentum it should coincide with the low- . 9
est order perturbation expansion of the surface susceptibility Uil P= mﬁln Z

F

x(p)=G2(p),

P+ 7. (3.10

P

(ﬂnZ”(U,v)
G(OZ)( ) 1 +O( ) :ﬂu(uyv) Ju
' p;m01u01001C0 :ﬁ u01U0
Cot Vp™+my 34 (9|nZH(U,U)
(3.4 FBuUw) e (3.11

and its first derivatives with respect fif. Thus we obtain

necessary surface normalization conditions Above equations should be calculated at the infrared-

stable random fixed poitEP) of the underlying bulk theory.

1 The other critical exponents of the special surface transition
GO9(0;m,u,v,c)=—— (3.5 can be determined via the set of surface scaling relations
m-+c
[25].
and IV. THE PERTURBATION SERIES UP TO TWO LOOPS

G2 (p;m,u,v,c) 1 In the preceding section we showed that the surface criti-

07 =—m- (3.6 cal exponenty?® can be obtained from Eq3.11), where

P p=0 renormalization factog is defined by Eq(3.7). By analogy

with infinite-volume theory, we considered the inverse sur-
Equation(3.5) defines the required surface-enhancementace correlation functiohG(®?(p;mgyug,ve,co)] * in order
shift 6c and shows that the surface susceptibility diverges ato avoid the dependence of external lines on the external
m=c=0. This point corresponds to the multicritical point momentump and the surface enhancemegtin each exter-
(méc,cgp) at which special transition takes place. nal propagator. Thus we considered the Feynman diagram
From the normalization condition of E¢3.6) and expres- expansion of the unrenormalized surface correlation function
sion for renormalized correlation function of E.3, we  [G(®?(p)] ! in terms of the free propagator of E®.2) up
can define the renormalization facty=2,Z, by to the two-loop order. It should be mentioned that here, by
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analogy with Refs[33,49,34 in order to avoid the usual
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In the present paper, we restrict our discussion to the case

bulk and surfaceiv singularities, which are present in cor- of semi-infinite random Ising-likeystems by taking the rep-

relation function[ G(®?(p;myug,ve,c)]1 %, we performed

lica limit n—0. Equation(4.3) in such a limit implies

the mass- and surface-enhancement renormalizations. After

carrying out the integration of Feynman integrals, which
in the calculation of the correlation function

arise
[G(2(p;myug,ve,Co)] L, we obtained

T 102
(UO,UO) 1—T+T ——In2+|n22}+ﬂo)A,

4.0

where the constard=0.202 428 arose from the two-loop

contribution. The corresponding weighting facto&o’
=[(n+2)/3]ug+ve and tP=[(n+2)/3]ud+v3+2uqvg

arise from the standard symmetry factors of the effective

Hamiltonian of Eq.(2.1) (see Ref[34]). Thus the renormal-

ization factorZ; is expressed as a second-order series > expan

sion in powers of bare dimensionless parameterg,
= Ug/8m andvy=vy/8mm.

After carrying out the vertex renormalizatiom_@:?(l
+[(n+8)/6]u+v), vo=v(1+3v+2u), we obtain a modi-

fied series expansion & in terms of new renormalized

coupling constantsl andu,

o n+2— v 2 X
-1 _ 7
Z (uv)=1~- 12.J 4+ 3 B(n)u?+B(1)v
+2B(n)uv, (4.2

where B(n)=A—
replica number.

Combining the renormalization factti“(u v) with the
one-loop pieces of thgs functions g,(u,v)= —u(1-[(n
+8)/6]u—v), ,8—(u v)=—v(1—2v—2u) according to Eq.
(3.1, we obtain the desired series expansion 7@?

1+[(n+2)/12](In?2—In2) andn is the

n+2 v n+2
nﬁ"’(u,v)=——u +12( )

2(n+8) TETIEa

+4A1 24 8 A 4.3
5()0 T8 (nMuv, (4.3

whereA(n) is a function of the replica number defined as

48

0 n+2
A(n)=2A+ + T(Inzz—ln 2), (4.4)

and renormalized coupling constantsindv, normalized in

a standard fashion= [(n+8)/6]Uandv = 2v_
In fact, Eq.(4.3 for 77 P provides a result for theubic
anisotropic model given by the effective Hamiltoniai2.1)

with general numben of order-parameter components. In
the case of infinite space, this cubic anisotropic model at-

tracted much attention very recentsee, e.g., Ref$50-52
and references thergin

u

niP=— 5 6 8A(0)u2+ —A(1)v?+A(0)uv.

(4.5

As it is well known, the knowledge of one surface critical
exponent gets access via the usual scaling relafidBkto
the other surface critical exponents. For convenience, further
below we suppress the superscrigy at the critical expo-
nents.

V. CALCULATION OF THE
SURFACE CRITICAL EXPONENTS

The present section is devoted to numerical calculation of
the critical exponents at the special surface transition. The
individual RG series expansions for other critical exponents
can be derived from Eq4.5 through standard scaling rela-
tions[25] (with d=3),

_ntm
/n 2 ’

14
Br=5(d=2+m),

yu=v(l-17),

Y1=v(2=71), (5.0

14
Ay=5(d=7),

A d+2-79
51:_: — ’
B1 d—2+ 7|

A, d-m)
Mg a2ty
1 K

Each of these critical exponents characterizes certain proper-
ties of the system with the surface in the vicinity of the
critical point (see Ref.[35]) with v, n, and A=v(d+2
—7)/2 being the standard bulk exponents; the series expan-
sions forv and  atd=3 are given by8-10|

2n+8)" 324l 9V n+8

(n+2) 1 (11 , 2

X (27n—38) _3n+2) 27n—38)u?
( W e :

v? 2uv

27 3(n+8)

8
77

(n+2)
(n+8)?

2

(5.2
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TABLE 1. Critical exponents of the special surface transition f@=3 up to two-loop order at the random fixed point
u*=-0.60509,* =2.39 631.

Oy

exp P [0/0] [1/0] [0/1] [2/0] [0/2] [11/1] [1/11] R1 f(my,v,7m)
2i

7 —2382 000 —0.324 —0.245 —0.205 —0237 —0244 —0238 —0.238  —0.238

A -339 075 1.074 1.229 1.083 1.046 1.083 1.090 1.101 1.098
n -335 000 -0162 -0139 -0.087 -0.102 —0.115 -0114 -0.116  —0.104

B 0.00  0.25 0.25 0.25 0.263 0.263 0.258
yi1 -314 050 0.824 0.979 0.825 0.783 0.825 0.834 0.845 0.839
7 -256  1.00 1.405 1.680 1.410 1.327 1.410 1.421 1.442 1.426
5 -141 5.0 6.619 7.394 7.062 5.521 6.205 6.236 6.343 6.521
o ~1.40  3.00 4.295 5.279 3.926 3.418 4.032 4.070 4.172 4.249

For each of the surface critical exponents we obtain fromwhich give the numerical values listed in Table I.
Eqg. (5.1 and Eq.(4.3) atd=3 a double series expansion in  Table | contains the ratios of magnitudes of first-order
powers ofu andv truncated at the second order (04i) and second-orderQ,i) perturbative corrections ap-
pearing in inverse series expansions of our critical expo-
nents. The largefabsolute values of these ratios correspond
to the better apparent convergence of truncated series. It is
easy to see that the series of inverse expansions for all criti-
Since perturbation expansions of this kind are generally dical exponents, exceg,, are alternating in sign and conse-
vergent[53], the powerful resummation procedure of the se- uently adapted to the above-mentioned PRdeel resum-
ries is essential to obtain accurate estimates of the criticahation analysigsee Appendix A Among the direct series
exponents. One of the simplest ways is to calculate for eacthe sijtuation is more complicated. The ratios of the first-order
quantity a sequence of rational Padgproximants in two (0,) and the second-orde©¥) perturbative corrections of
variables from the original series expansions. This shoulghe direct series expansions for the critical exponefts
work well when the series behave in lowest orders “in ay,,, andy, are positive[58]. This means that the signs of
convergent fashion.” Besides, if the series are alternating ifhe first- and second-order corrections do not alternate and
sign[56], we can use more modern Paerel resummation hence the corresponding series are not suitable to the Pade
procedqres[S?] for their analysis. The results of our Pade ggre| resummation technique, since {rel/1] approximant
and PadeBorel analyses for critical exponents at the specialf the Borel transform have a pole in the integration range.
surface transition are represented in Table |. But these series are slowly convergent, because the contribu-

Since our calculations are performed in the frames of thejon of the second order are considerably less than contribu-
two-loop approximation, we evaluate the surface critical €X+jon of the first order. For example, the rati, /O, for the
ponents at the corresponding standard RG random fixegitical exponentA; is equal to 35.1. Thus the above-
point of the underlying bulk theor}g], mentioned series adapted to the Padelysis. It should be
noted, that a very similar situation has been met in the analy-
sis of the perturbation series expansions of the surface criti-
as it is usually accepted in the massive field-theoreticaf@ €xponents at the ordinary transition in pugs] and
framework. quenched dilute semi-infinite Ismg-_llke syste_f@]. _

The valueg 0/0], [1/0], and[2/0] are simply the direct The _resuIEsl of Pa_dBorgI analysis of the inverse series
partial sums up to the zeroth, first, and second orders, respefXPansionsX "~ are given in Table I. These values give nu-
tively. Padeapproximantg 0/1] and[0/2] represent the par- merical estimates of surface critical exponents with a high
tial sums of the inverse series expansions up to the first ang€9ree of reliability. As it is easy to see from Table |, the

f(uw)= 2 fuul.

j,I=0

(5.3

u*=-0.60509, v*=2.39631, (5.9

second order.
As in Ref.[34], we also consider nearly diagonal two-
variable rational approximants of the type

1+ alu +gll) + alluv
[11/1)= — (5.5
1+ b1U+ bj_U
and
1+au+a
[1/11]= (5.6)

1+ b1U+HlU + bllul) '

most reliable estimate is obtained from the inverse series
expansion for the exponenj, which represent the best con-
vergence properties. Substituting this valuesgt —0.238
together with the standard bulk values=0.678 and
=0.031[8] into the scaling laws of Eq5.1), we have ob-
tained the remaining critical exponents that are present in the
last column of Table I. The deviations of these estimates
from the other estimates of the table might serve as a rough
measure of the achieved numerical accuracy.

In order to understand the reliability of the results ob-
tained in the two-loop approximation, we have also calcu-
lated some critical exponents from= —0.238 and six-loop
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TABLE II. Critical exponents of the special surface transition from tfeexpansion.

exp [0/0] [1/0] [0/1] [2/0] [0/2] [1/1]

7 0.00 —0.336 ~0.252 —0.289 —0.287 ~0.295
Ay 0.75 0.960 1.016 0.938 0.917 0.940
" 0.00 ~0.168 ~0.144 ~0.149 ~0.151 ~0.151
B 0.25 0.208 0.210 0.197 0.198 0.194
Y 0.50 0.752 0.838 0.740 0.714 0.741
V1 1.00 1.252 1.338 1.224 1.190 1.227
5, 5.00 6.682 7.535 7.019 6.729 7.104
51 3.00 4.346 5.441 4.608 4.232 4.671

perturbation theory results for bulk critical exponents:where{(3)=1.2020569 is the Riemanfifunction, and the
v=0.678(10) and#=0.030(3) [47]. We have obtained usual geometric factak,=2"97"9%T(d/2) has been ab-
A;=1.098, 7 =-0.104, B,=0.258, 7,;=0.839, v; sorbed into the redefinitions of the coupling constants. As a
=1.427,5,=6.522, ands;;=4.249, which differ very little  result we obtain

from the values in the last column of Table I. This indicates _
good stability of the results obtained in the frames of the 7)== /2_:63 ME

two-loop approximation. 2Xx 53
_[3e, 378(3) 347 63
VI. e EXPANSION 7= 106" x5 © (6.3

As it is mentioned above, there is an alternative method to
analyze the influence of randomness on the critical behavidrrom scaling relations for surface critical exponents glad
introduced by Harris and LubensKyl]. This method was €xpansions for random bulk exponemtand 7 [6,7], we can
used by Ohno and Okali&5] to study critical behavior of ~Obtain perturbative series expansions for other surface criti-
semi-infinite systems with &aussian randomnesa 4—e  cal exponentgsee Appendix B _
dimensions in the frames afe expansion for obtaining the ~ As in the case of the preceding section, we perform a
two-loop approximation for correlation function and deriving Padeanalysis of our/e expansions a¢=1. The numerical
corresponding series expansions for the surface critical extalues of critical exponents obtained in this way are repre-
ponentsz, and », . Their results in the case of special sur- _sented in Table Il. It should be noticed that t{ﬁé expansion
face transition an=1 (see Ref[35]) with corresponding IS not Borel summabl€39,4Q.

changes of coupling constant normalizations~v /24 w— The Padepproximant§ 1/0] for the exponentsy; and 7,
—u/3) in accordance with our notations are written in thereproduce the first-order results obtained by Ohno and Okabe
form [35]. On the other hand, the other exponergts, y;1, and
v, slightly differ from the previous resul{35]
u v, T o7 312 ~0.17, 71,=0.78, 7,=1.26 6.4
7]”=—§—§+1—2U +1—20 +ZUU+O(E ), B.=0.17, v,,=0.78, vy,=1.26. (6.9
The reason is that we calculated ¢av0] estimates directly
u v 11 23 11 from each./e expansion, while in Ref[35] they were ob-
m=-g-7" %u2+ 4—802+ U +0(€¥). (6.1) tained from the scaling relations using the above-mentioned

numerical vales ofp and », (6.9. In addition we per-
formed the analysis of the corresponding series expansions
Unfortunately, only the first ordex/e corrections have for surface magnetic shift exponedt, exponentss, and
exponentsy and », in Ref. [35]. In the present paper, we ang the surface and bulk external magnetic fields, respec-
derive the next term in/e expansion for above-mentioned tively.

surface critical exponents using the fixed-point values up to  Comparing Tables | and II, we find that the values of the

O(e) [6,7] first-order approximants, denoted py/0] and[0/1] in both
cases, are of comparable magnitudes. It can be easily verified
6e 110+ 63¢(3) that the above first-order approximants of the critical expo-
u*=-31/=—+1 €, nents satisfy the scaling relation
53 532
n =(n+n)/2 (6.9
v* =4 [8e_ 72&%6, (6.2  With the value of the bulk exponent=—(€/106)+O(e>?)
53 53 [2,3,5.
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But, on the other hand, the values of the second-ordefhese are evidently different from results obtained for pure
approximants are significantly different in both tables. Assemi-infinite Ising-like system[35,61]
was shown previously36—40Q, \/e series expansions pos- _ _ __ _
sess rather irregular structure and are practically unsuitable”! 0165, 4,=0.997, =, 0.067, B,=0.263,
for subsequent resummation and are ineffective for obtaining . =0.734, y,=1.302, §,=5.951, &;;=3.791,
reliable numerical estimates. Our results confirm this as- (7.2

sumption. If we try to reproduce the numerical value of bulk )
exponenty [see Eq.(6.5] from our second-order data of and show that the presence of quenched bulk disorder affects

Table Il according to the scaling relations of H6.5), we the critical behavior of the boundary surface. So, in the case
always obtain negative values. But, this does not agree WitR.f speC|_aI surface transition, S'm"af'y as in the case of pre-
' viously investigated ordinary transitiof84], a new set of

the sufficiently precise positive results of massive field- f itical hould b oned th
theoretic approach for random bulk systems in three dimen%iﬁce crmcat (i;(pont(re]nts app?_ar. tl't S O]L,’ h e mentione :1 at
sions up to two-lood8,59], three-loop[60,10,39, and to at the present ime the investigation of the Crossover pne-

: nomenon from ordinary to special surface transition for such
four-loop [61] order. Besides, very recently the valugs yinds of semi-infinite systems with quenched bulk disorder is
=0.025+0.01 andn=0.030(3) were obtained, respectively, gi|| an open question. This problem will be the topic of our

in the frames of five-loop[50] and six-loop [47 next publication.

renormalization-group expansions. This discrepancy is not
present in our calculation performed directly &3 (see ACKNOWLEDGMENTS

Table ). From the surface scaling relation of E&.5 and . .
the second-order results of Table | we always obtain positive We thank Dr. M. Shpot for a useful discussion and Pro-
essor Y. Okabe for reading the manuscript. This work was

V?é%?OS; gg:;cmaaltggponenby, which quite well agree with supported in part by the National Science Council of the
P ) Republic of ChingTaiwan under Grant No. NSC 89-2112-
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VIl. SUMMARY APPENDIX A

The main aim of the present paper was an investigation of ag was mentioned above, the power series expansions of
the influence of quenched bulk randomness on the surfacgitical exponent§see Eq.(5.3)] are in general not conver-
critical behavior of semi-infinite ISIng-llke SyStemS at the gent. In order to obtain meaningfu| and rather accurate
special transition. We have calculated the surface critical exnumerical estimates we must apply to them sufficiently pow-
ponents for such systems using two alternative techniquesirful “resummation” procedure. In the present paper we em-
by the massive field theory directly dt=3 dimensions up to ploy a two-variable resummation techniq[60,10,61,59
two-loop order, and the/e expansion atl=4—¢ dimen- that is a simple generalization of the single-variable Pade
sions to the order d®((+/€)?). In the last case we extend up Borel method. The starting point of this calculation is to
to the next-to leading order, the previous first-order resultgonstruct a Borel transform for truncated power series of
obtained by Ohno and Okalp5]. Eq. (5.3

In both cases the resummation of obtained perturbation 3
series expansions for surface critical exponents was per- F(utot)= >, — ! I(ut)j(vt)'. (Al)
formed using Padanalysis. But, the/e expansions possess i=o (J+D!
rather irregular structure, as was shown in RE39,38,40.  Then we construct the rational approxima@f(x,y),

This makes them practically unsuitable for subsequent-Pade
Borel resummation and ineffective for getting reliable quan-
titative numerical estimates. However, in the case of the mas-
sive field theory the resulting two-loop series expansions = ] )
could be resummed by means of a more precisé Badel which is the extrapolation of the-BoreI transfoiial). It is
resummation technique. In the previous sections, we hav@lear that au=0 orv=0 we obtain from Eq(A2) the usual
discussed some merits of using the massive field theory dl-1/1] Padeapproximant. The coefficients andb; are ex-
rectly in d=3 dimensions for obtaining most reliable nu- Pressed as expansion coefficientsf(fi,v) in Eq. (5.3)
merical estimates for critical exponents. Thus, the best esti- a10=010+b bio=— 920/

mates for surface critical exponents of semi-infinite systems 1079107 10y 0T 2075100

1+a,0utagw +aguv
1+bygu+bgw '

FB(u,v)= (A2)

with quenched bulk disorder at the special transition, which 891=001tbo1,  bo1=—002/%01,
we can obtain in the frames of the present approximation
scheme, are a11= 911+ D101+ Boag1o0, (A3)

where g; =f; /(j+1)!. Hence, for the resummed function
7 =-0.238, A;=1.098, 75, =-0.104, B,=0.258, by means of the PaedBorel resummation technique we ob-
tain

y11=0.839, y;=1.426, 6,=6.521, 511:4.245(;7. ) f—(u'v):f F8(ut,ut)e tdt. (Ad)
. 0
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This technique has been applied to the inverse power series
expansions of surface critical exponents to find the corre-

sponding Pad@orel approximantfR 1.

APPENDIX B

The perturbation series expansions of other surface criti-
cal exponents up t@®((\/e)?) order can be obtained from

scaling relations of Eq5.1) and are given by

3 5 [6e 3523-378Q(3)
4 8 V53 16X 53

1 1 [6e 3 [252(3)-461]
A= eVss'16 s ©

PHYSICAL REVIEW E 65 066103

2268/(3)— 2453

_1 3 /6e
711_§+Z 53 8x 53
3 [6e 3[378/(3)—347
y1=1l+-\/=———————¢€,
4 V53 4 532

B [6€ Q[630§(3)— 1073
51—5+5 5_3_\.) 532 €,

511=3+4\/g; LT3 —1277 (B1)

53
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