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Critical behavior of semi-infinite random systems at the special surface transition
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We use a three-dimensional massive field theory up to the two-loop approximation to study the critical
behavior of semi-infinite quenched random Ising-like systems at the special surface transition. Besides, we
extend up to the next-to leading order, the previous first-order results of theAe expansion obtained by Ohno
and Okabe@Phys. Rev. B46, 5917~1992!#. The numerical estimates for surface critical exponents in both cases
are computed by means of the Pade´ analysis. Moreover, in the case of the massive field theory we perform
Padé-Borel resummation of the resulting two-loop series expansions for surface critical exponents. The most
reliable estimates for critical exponents of semi-infinite systems with quenched bulk randomness at the special
surface transition, which we can obtain in the frames of the present approximation scheme, areh i5

20.238, D151.098, h'520.104, b150.258, g1150.839, g151.426, d156.521, andd1154.249. These
values are different from critical exponents for pure semi-infinite Ising-like systems and show that in a system
with quenched bulk randomness the plane boundary is characterized by a new set of critical exponents at the
special surface transition.

DOI: 10.1103/PhysRevE.65.066103 PACS number~s!: 64.60.Fr, 05.70.Jk, 68.35.Rh, 75.40.Cx
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I. INTRODUCTION

Investigation of the critical behavior of real physical sy
tems is of considerable theoretical and experimental inter
Real physical systems are usually characterized by the p
ence of different kinds of defects and impurities that may
localized inside the bulk or at the boundary.

Historically, the systematic investigation of the quench
disordered systems was initiated in the seminal works
Harris, Lubensky@1,2#, and Khmel’nitskii@3#. The study of
the Ising-like systems among the whole class of O(n) sym-
metricn-vector models ind dimensions is of special interes
because they satisfy the Harris criterion@4#, which states that
the presence of randomness is relevant for such pure sys
that have a positive specific heat exponenta. The introduc-
tion of the bulk dilution into a system shifts the critical tem
perature of the bulk phase transition and drives the syste
another ‘‘random’’ fixed point in which unconventional sca
ing behavior is observed. It has been confirmed by the W
son’s renormalization group ande expansions@1–3,5–7#, a
three-dimensional massive field theory@8–10#, experiments
@12–14#, and Monte Carlo simulations@15,16# that the criti-
cal behavior of three-dimensional disordered Ising-like s
tems is characterized by a new set of critical exponents@17#.
The Ising model atd52 is a marginal case because in th
casea50 and the corresponding logarithmic corrections
the power law singularities of the pure model take place
was confirmed in a series of papers@18–23#.

The presence of a surface leads to the appearance o
ditional problems in critical phenomena. The most gene
review of critical behavior at surfaces and the list of rela
references are given in Refs.@24–26#. It is well known@24–
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28# that each surface universality class is defined by the b
universality class and specific properties of a given bou
ary. At the present time three surface universality class
called ordinary, special, and extraordinary, are kno
@25,26#. They correspond to the respective surface transiti
that occur at the bulk critical pointm0

25m0c
2 @29# and are

characterized by different fixed points

c0*
,ord51`, c0*

,sp5c0
sp, c0*

,extr52`. ~1.1!

Here c0 is so called ‘‘bare surface enhancement,’’ whic
measures the enhancement of the interactions at the sur
and (m0

2 ,c0)5(m0c
2 ,c0

sp) is a multicritical point, called spe-
cial point.

The influence of quenched surface disorder on the sur
critical behavior was investigated by analytic calculatio
@30,31# and Monte Carlo simulations@23,32#. General
irrelevance-relevance criterion of the Harris-type for sho
range as well as for long-range correlated quenched sur
disorder was derived@30#. In the case of special transition
has been demonstrated@30,33# that the fixed point describing
the surface critical behavior of three-dimensional pure s
tems is stable with respect to short-range correla
quenched surface disorder. Thus, the weak short-ra
quenched surface disorder is irrelevant for three-dimensio
systems, but long-range correlated enhancement diso
could become relevant ind<4 dimensions. Another interest
ing example is the case of random field quenched surf
disorder at the special transition of an Ising-like critical sy
tem. In this case the disorder also becomes relevant fod
<4 dimensions@30#.

What happens with the surface critical behavior, when
quenched disorder is introduced in the bulk? The answer
this question could be found in our recent paper@34#, where
we quantitatively confirm the previous general expectat
by Ohno and Okabe@35# that the introduction of quenche
bulk randomness in semi-infinite systems bounded by
©2002 The American Physical Society03-1
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plane surface affects the surface critical behavior of th
systems. From the results obtained in the frames of the m
sive field theory directly ind53 dimensions up to the two
loop approximation, we have found that the critical exp
nents of quenched dilute semi-infinite systems at
ordinary transition@34# differ from the surface critical expo
nents of the pure semi-infinite systems@33#. Besides, we
have shown that to ordere, the Ae expansion for surface
critical exponentsh i andh' gave negative value of the co
relation function critical exponenth for the random bulk
Ising system according to the scaling relationh52h'

2h i . It confirms the well known fact that the second ord
of the Ae expansion is not enough to give correct positi
value of bulk critical exponenth @6,7,36–40#. The obtained
results@34# have shown that these kinds of deficiencies
not appear in the calculations using the massive fie
theoretic approach directly ind53 dimensions@41#.

All these have stimulated us to study the critical behav
at the special surface transition occurring in quenched b
dilute semi-infinite systems bounded with a plane surface
should be mentioned that the problem of investigation of
critical behavior at the special surface transition is very i
portant from such point of view that at some conditions
may be reduced to the problem of the adsorption ofu poly-
mers on a wall@42,43#.

Two main analytic methods have been used for the inv
tigation of the critical behavior of the systems with quench
randomness. One of them is the renormalization-group~RG!
approach introduced by Harris and Lubensky@1#. This ap-
proach involves applying the RG transformation to the r
dom system directly and subsequent averaging over diso
Ohno and Okabe@35# employed this method to analyze th
influence of randomness on the surface critical behavio
d542e dimensions in the frames ofAe expansion.

Another technique introduced by Grinstein and Luther@5#
involves first removing the randomness by averaging,
subsequent employing the renormalization group. They c
sidered anmn-vector model and showed that analytic co
tinuation of this model ton50 is equivalent to a model of a
randomm-component spin system. An elegant derivation
this equivalence has been given by Emery@44#. We mainly
use this technique to treat randomness.

The present paper is dedicated to the investigation of
critical behavior at the special surface transition in se
infinite, quenched dilute Ising-like systems at the bulk ‘‘ra
dom’’ critical point directly in d53 dimensions using the
massive field theory up to the two-loop approximation. B
sides, we extend up to the next-to leading order of theAe
expansion, the previous first-order results obtained by O
and Okabe@35#. The numerical estimates for critical expo
nents of the special surface transition in both cases are
culated using extensive Pade´ analyses. Moreover, in the cas
of the massive field theory we perform Pade´-Borel resumma-
tions of the resulting two-loop series expansions and ob
quite reasonable and reliable numerical estimates for sur
critical exponents. The obtained results confirm that in
case of quenched bulk randomness in semi-infinite syst
the new set of the surface critical exponent appears.
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II. MODEL

In the previous work@34#, we presented an effectiv
Landau-Ginzburg-Wilson Hamiltonian with cubic anisotrop
defined in semi-infinite space for description of critical b
havior of quenched dilute semi-infinite Ising-like systems
the ordinary transition in the replica limitn→0. The critical
behavior at the special surface transition has its own pe
liarities. In the general case effective Hamiltonian for su
systems must involve terms to describe surface interact
@24,25,27,45,30#. Thus, the common form of the effectiv
Hamiltonian to describe the critical behavior of quench
dilute semi-infinite Ising-like systems in the replica limitn
→0 can be written as

H~fW !5E
0

`

dzE dd21r F1

2
u¹fW u21

1

2
m0

2ufW u21
1

4!
v0(

i 51

n

f i
4

1
1

4!
u0~ ufW u2!2G1

1

2E dd21rc0fW 2. ~2.1!

It should be mentioned that herefW is an n-vector field
with the componentsf i ,i 51, . . . ,n defined on a half-space
R1

d [$x5(r ,z)PRdurPRd21,z>0% bounded by a plane free
surface atz50. The fields f(r ,z) satisfy the Neumann
boundary condition@27,45#, so that we have]zf(r ,z)50 at
z50. This Hamiltonian takes into account surface intera
tion in the form of an additional term1

2 *dd21rc0fW 2. The
model defined by Eq.~2.1! is restricted to translations para
lel to the boundary surface. Thus, only parallel Fourier tra
formations ind21 dimensions take place.

III. RENORMALIZATION OF THE CORRELATION
FUNCTION

The correlation function of the model of Eq.~2.1!, which
involvesN fieldsf(xi) at distinct pointsxi (1< i<N) in the
bulk and M fields f(r j ,z50)[fs(r j ) at distinct surface
points with parallel coordinatesr j (1< j <M ), has the form

G(N,M )~$xi%$r j%!5K )
i 51

N

f~xi !)
j 51

M

fs~r j !L . ~3.1!

The corresponding full free propagator in thepz representa-
tion is given by

G~p,z,z8!5
1

2k0
Fe2k0uz2z8u2

c02k0

c01k0
e2k0(z1z8)G ,

~3.2!

wherek05Ap21m0
2 with p being the value of parallel mo

mentump associated withd21 translationally invariant di-
rections in the system. The first term in Eq.~3.2! corresponds
to usual free bulk propagator in coordinate space, betw
the pointsx5(r ,z) and x85(0,z8), and the second one, s
called ‘‘surface’’ term, depends on the distance between
point x and its ‘‘mirror image’’ x̂85(0,2z8).

The formulation of the randomness problem introduc
by Grinstein and Luther indicates that the renormalizat
3-2
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process for the random systems is similar to that for
‘‘pure’’ case @25,33#. As it is known, in the theory of semi
infinite systems the bulk fieldf(x) and the surface field
fs(r ) should be reparametrized by differentuv-finite renor-
malization factorsZf(u,v) andZ1(u,v),

f~x!5Zf
1/2fR~x! and fs~r !5Zf

1/2Z1
1/2fs,R~r !.

The renormalized correlation function involvingN bulk and
M surface fields with (N,M )Þ(0,2) can be written as

GR
(N,M )~0;m,u,v,c!

5Zf
2(N1M )/2Z1

2M /2G(N,M )~0;m0 ,u0 ,v0 ,c0!.

~3.3!

In order to obtain the critical exponenth i
sp that characterizes

surface correlations at special transition, it is sufficient
consider a two-point correlation function of surface fiel
G(0,2)(p)5^w(p,z50)w(2p,z850)&.

It should be mentioned that the renormalized massm,
coupling constantsu, v, and the renormalization factorZf
are fixed via the standard normalization conditions of
infinite-volume theory @46,5,41,47#. In order to remove
short-distance singularities of the correlation functionG(0,2)

located in the vicinity of the surface, the surfac
enhancement shiftdc is required. In accordance with this th
new normalization condition should be introduced for t
definition of the surface-enhancement shiftdc and surface
renormalization factorZ1. We normalize the renormalize
surface two-point correlation function in such a manner t
at zero external momentum it should coincide with the lo
est order perturbation expansion of the surface susceptib
x i(p)5G(0,2)(p),

G(0,2)~p;m0 ,u0 ,v0 ,c0!5
1

c01Ap21m0
2

1O~u0 ,v0!

~3.4!

and its first derivatives with respect top2. Thus we obtain
necessary surface normalization conditions

GR
(0,2)~0;m,u,v,c!5

1

m1c
~3.5!

and

]GR
(0,2)~p;m,u,v,c!

]p2 U
p50

52
1

2m~m1c!2
. ~3.6!

Equation~3.5! defines the required surface-enhancem
shift dc and shows that the surface susceptibility diverges
m5c50. This point corresponds to the multicritical poi
(m0c

2 ,c0
sp) at which special transition takes place.

From the normalization condition of Eq.~3.6! and expres-
sion for renormalized correlation function of Eq.~3.3!, we
can define the renormalization factorZi5Z1Zf by
06610
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Zi52m
]

]p2
@G(0,2)~p!#21U

p250

5 lim
p→0

m

p

]

]p
@G(0,2)~p!#21.

~3.7!

The renormalizationZ factors in the critical region have th
scaling behavior

Zf}mh,

Z1
sp}mh1

sp
, ~3.8!

wherem is identified as the inverse bulk correlation leng
j21}tn, t5(T2Tc)/Tc . Hereh is the standard bulk corre
lation exponent and exponenth1

sp is specific for our
quenchedrandom semi-infinite system. The exponentsh and
h1

sp arise from RG arguments of an inhomogeneous Call
Symanzik equation for correlation functionsGR

(0,2) , Eq.~3.3!,
@48,33#

hf5m
]

]m
ln ZfU

FP

, h1
sp5m

]

]m
ln Z1U

FP

. ~3.9!

The simple scaling dimensional analysis ofGR
(0,2) and mass

dependence ofZ factors, Eq.~3.8!, defines the surface corre
lation exponenth i

sp via

h i
sp5h1

sp1h. ~3.10!

From Eqs.~3.7!, ~3.9!, and~3.10!, we obtain for surface cor-
relation exponenth i

sp ,

h i
sp5m

]

]m
ln ZiU

FP

5bu~u,v !
] ln Zi~u,v !

]u

1bv~u,v !
] ln Zi~u,v !

]v FP . ~3.11!

Above equations should be calculated at the infrar
stable random fixed point~FP! of the underlying bulk theory.
The other critical exponents of the special surface transi
can be determined via the set of surface scaling relati
@25#.

IV. THE PERTURBATION SERIES UP TO TWO LOOPS

In the preceding section we showed that the surface c
cal exponenth i

sp can be obtained from Eq.~3.11!, where
renormalization factorZi is defined by Eq.~3.7!. By analogy
with infinite-volume theory, we considered the inverse s
face correlation function@G(0,2)(p;m0u0 ,v0 ,c0)#21 in order
to avoid the dependence of external lines on the exte
momentump and the surface enhancementc0 in each exter-
nal propagator. Thus we considered the Feynman diag
expansion of the unrenormalized surface correlation func
@G(0,2)(p)#21 in terms of the free propagator of Eq.~3.2! up
to the two-loop order. It should be mentioned that here,
3-3
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analogy with Refs.@33,49,34# in order to avoid the usua
bulk and surfaceuv singularities, which are present in co
relation function@G(0,2)(p;m0u0 ,v0 ,c0)#21, we performed
the mass- and surface-enhancement renormalizations. A
carrying out the integration of Feynman integrals, whi
arise in the calculation of the correlation functio
@G(0,2)(p;m0u0 ,v0 ,c0)#21, we obtained

Zi
21~ ū0 ,v̄0!512

t̄ 1
(0)

4
1

t̄ 1
(0)2

4 F1

2
2 ln 21 ln22G1 t̄ 2

(0)A,

~4.1!

where the constantA.0.202 428 arose from the two-loo
contribution. The corresponding weighting factorst̄ 1

(0)

5@(n12)/3#ū01 v̄0 and t̄ 2
(0)5@(n12)/3#ū0

21 v̄0
212ū0v̄0

arise from the standard symmetry factors of the effect
Hamiltonian of Eq.~2.1! ~see Ref.@34#!. Thus the renormal-
ization factorZi is expressed as a second-order series exp
sion in powers of bare dimensionless parametersū0

5u0/8pm and v̄05v0/8pm.
After carrying out the vertex renormalizationsū05ū(1

1@(n18)/6#ū1 v̄), v̄05 v̄(11 3
2 v̄12 ū), we obtain a modi-

fied series expansion ofZi in terms of new renormalized
coupling constantsū and v̄,

Zi
21~ ū,v̄ !512

n12

12
ū2

v̄
4

1
n12

3
B~n!ū21B~1!v̄2

12B~n!ūv̄, ~4.2!

where B(n)5A2 1
4 1@(n12)/12#(ln222ln2) and n is the

replica number.
Combining the renormalization factorZi(ū,v̄) with the

one-loop pieces of theb functions b ū(ū,v̄)52ū(12@(n
18)/6#ū2 v̄), b v̄(ū,v̄)52 v̄(12 3

2 v̄22ū) according to Eq.
~3.11!, we obtain the desired series expansion forh i

sp,

h i
sp~u,v !52

n12

2~n18!
u2

v
6

112
~n12!

~n18!2 A~n!u2

1
4

9
A~1!v21

8

n18
A~n!uv, ~4.3!

whereA(n) is a function of the replica numbern, defined as

A~n!52A1
n210

48
1

n12

6
~ ln222 ln 2!, ~4.4!

and renormalized coupling constantsu andv, normalized in
a standard fashionu5@(n18)/6#ū andv5 3

2 v̄.
In fact, Eq. ~4.3! for h i

sp provides a result for thecubic
anisotropicmodel given by the effective Hamiltonian~2.1!
with general numbern of order-parameter components.
the case of infinite space, this cubic anisotropic model
tracted much attention very recently~see, e.g., Refs.@50–52#
and references therein!.
06610
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In the present paper, we restrict our discussion to the c
of semi-infinite random Ising-likesystems by taking the rep
lica limit n→0. Equation~4.3! in such a limit implies

h i
sp52

u

8
2

v
6

1
3

8
A~0!u21

4

9
A~1!v21A~0!uv. ~4.5!

As it is well known, the knowledge of one surface critic
exponent gets access via the usual scaling relations@25# to
the other surface critical exponents. For convenience, fur
below we suppress the superscriptsp at the critical expo-
nents.

V. CALCULATION OF THE
SURFACE CRITICAL EXPONENTS

The present section is devoted to numerical calculation
the critical exponents at the special surface transition. T
individual RG series expansions for other critical expone
can be derived from Eq.~4.5! through standard scaling rela
tions @25# ~with d53),

h'5
h1h i

2
,

b15
n

2
~d221h i!,

g115n~12h i!,

g15n~22h'!, ~5.1!

D15
n

2
~d2h i!,

d15
D

b1
5

d122h

d221h i
,

d115
D1

b1
5

d2h i

d221h i
.

Each of these critical exponents characterizes certain pro
ties of the system with the surface in the vicinity of th
critical point ~see Ref.@35#! with n, h, and D5n(d12
2h)/2 being the standard bulk exponents; the series exp
sions forn andh at d53 are given by@8–10#

n5
1

2 F11
v
6

1
~n12!

2~n18!
u2

1

324S 11

9
v22

2

n18

3~27n238!uv2
3~n12!

~n18!2
~27n238!u2D G ,

h5
8

27Fv2

27
1

2uv
3~n18!

1
~n12!

~n18!2
u2G . ~5.2!
3-4
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TABLE I. Critical exponents of the special surface transition ford53 up to two-loop order at the random fixed poi
u* 520.60 509,v* 52.39 631.

exp
O1i

O2i
@0/0# @1/0# @0/1# @2/0# @0/2# @11/1# @1/11# R21 f (h i ,n,h)

h i 223.82 0.00 20.324 20.245 20.205 20.237 20.244 20.238 20.238 20.238
D1 23.39 0.75 1.074 1.229 1.083 1.046 1.083 1.090 1.101 1.098
h' 23.35 0.00 20.162 20.139 20.087 20.102 20.115 20.114 20.116 20.104
b1 0.00 0.25 0.25 0.25 0.263 0.263 0.258
g11 23.14 0.50 0.824 0.979 0.825 0.783 0.825 0.834 0.845 0.839
g1 22.56 1.00 1.405 1.680 1.410 1.327 1.410 1.421 1.442 1.426
d1 21.41 5.00 6.619 7.394 7.062 5.521 6.205 6.236 6.343 6.521
d11 21.40 3.00 4.295 5.279 3.926 3.418 4.032 4.070 4.172 4.249
om
in

d
e

tic
a

u
a

e
ia

th
ex
xe

ica

p
-
a

-

er
-
po-
d
It is
riti-
-

der
f

f
and
ade

ge.
ribu-
ibu-

-

aly-
riti-

s
u-
igh
he
ries
-

the
tes
ugh

b-
u-
For each of the surface critical exponents we obtain fr
Eq. ~5.1! and Eq.~4.3! at d53 a double series expansion
powers ofu andv truncated at the second order

f ~u,v !5 (
j ,l>o

f j l u
jv l . ~5.3!

Since perturbation expansions of this kind are generally
vergent@53#, the powerful resummation procedure of the s
ries is essential to obtain accurate estimates of the cri
exponents. One of the simplest ways is to calculate for e
quantity a sequence of rational Pade´ approximants in two
variables from the original series expansions. This sho
work well when the series behave in lowest orders ‘‘in
convergent fashion.’’ Besides, if the series are alternating
sign @56#, we can use more modern Pade´-Borel resummation
procedures@57# for their analysis. The results of our Pad´
and Pade´-Borel analyses for critical exponents at the spec
surface transition are represented in Table I.

Since our calculations are performed in the frames of
two-loop approximation, we evaluate the surface critical
ponents at the corresponding standard RG random fi
point of the underlying bulk theory@8#,

u* 520.60509, v* 52.39631, ~5.4!

as it is usually accepted in the massive field-theoret
framework.

The values@0/0#, @1/0#, and @2/0# are simply the direct
partial sums up to the zeroth, first, and second orders, res
tively. Pade´ approximants@0/1# and@0/2# represent the par
tial sums of the inverse series expansions up to the first
second order.

As in Ref. @34#, we also consider nearly diagonal two
variable rational approximants of the type

@11/1#5
11a1u1ā1v1a11uv

11b1u1b̄1v
~5.5!

and

@1/11#5
11a1u1ā1v

11b1u1b̄1v1b11uv
, ~5.6!
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which give the numerical values listed in Table I.
Table I contains the ratios of magnitudes of first-ord

(O1i ) and second-order (O2i ) perturbative corrections ap
pearing in inverse series expansions of our critical ex
nents. The larger~absolute! values of these ratios correspon
to the better apparent convergence of truncated series.
easy to see that the series of inverse expansions for all c
cal exponents, exceptb1, are alternating in sign and conse
quently adapted to the above-mentioned Pade´-Borel resum-
mation analysis~see Appendix A!. Among the direct series
the situation is more complicated. The ratios of the first-or
(O1) and the second-order (O2) perturbative corrections o
the direct series expansions for the critical exponentsd1 ,
g11, andg1 are positive@58#. This means that the signs o
the first- and second-order corrections do not alternate
hence the corresponding series are not suitable to the P´-
Borel resummation technique, since the@11/1# approximant
of the Borel transform have a pole in the integration ran
But these series are slowly convergent, because the cont
tion of the second order are considerably less than contr
tion of the first order. For example, the ratioO1 /O2 for the
critical exponentD1 is equal to 35.1. Thus the above
mentioned series adapted to the Pade´ analysis. It should be
noted, that a very similar situation has been met in the an
sis of the perturbation series expansions of the surface c
cal exponents at the ordinary transition in pure@33# and
quenched dilute semi-infinite Ising-like systems@34#.

The results of Pade´-Borel analysis of the inverse serie
expansionsR21 are given in Table I. These values give n
merical estimates of surface critical exponents with a h
degree of reliability. As it is easy to see from Table I, t
most reliable estimate is obtained from the inverse se
expansion for the exponenth i , which represent the best con
vergence properties. Substituting this value ofh i520.238
together with the standard bulk valuesn50.678 andh
50.031 @8# into the scaling laws of Eq.~5.1!, we have ob-
tained the remaining critical exponents that are present in
last column of Table I. The deviations of these estima
from the other estimates of the table might serve as a ro
measure of the achieved numerical accuracy.

In order to understand the reliability of the results o
tained in the two-loop approximation, we have also calc
lated some critical exponents fromh i520.238 and six-loop
3-5
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TABLE II. Critical exponents of the special surface transition from theAe expansion.

exp @0/0# @1/0# @0/1# @2/0# @0/2# @1/1#

h i 0.00 20.336 20.252 20.289 20.287 20.295
D1 0.75 0.960 1.016 0.938 0.917 0.940
h' 0.00 20.168 20.144 20.149 20.151 20.151
b1 0.25 0.208 0.210 0.197 0.198 0.194
g11 0.50 0.752 0.838 0.740 0.714 0.741
g1 1.00 1.252 1.338 1.224 1.190 1.227
d1 5.00 6.682 7.535 7.019 6.729 7.104
d11 3.00 4.346 5.441 4.608 4.232 4.671
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perturbation theory results for bulk critical exponen
n50.678(10) andh50.030(3) @47#. We have obtained
D151.098, h'520.104, b150.258, g1150.839, g1
51.427,d156.522, andd1154.249, which differ very little
from the values in the last column of Table I. This indicat
good stability of the results obtained in the frames of
two-loop approximation.

VI. Ae EXPANSION

As it is mentioned above, there is an alternative metho
analyze the influence of randomness on the critical beha
introduced by Harris and Lubensky@1#. This method was
used by Ohno and Okabe@35# to study critical behavior of
semi-infinite systems with aGaussian randomnessin 42e
dimensions in the frames ofAe expansion for obtaining the
two-loop approximation for correlation function and derivin
corresponding series expansions for the surface critical
ponentsh i andh' . Their results in the case of special su
face transition atn51 ~see Ref.@35#! with corresponding
changes of coupling constant normalizations (u→v/24,w→
2u/3) in accordance with our notations are written in t
form

h i52
u

3
2

v
2

1
7

12
u21

11

12
v21

7

4
uv1O~e3/2!,

h'52
u

6
2

v
4

1
11

36
u21

23

48
v21

11

12
uv1O~e3/2!. ~6.1!

Unfortunately, only the first orderAe corrections have
been obtained from these equations for the surface cri
exponentsh i andh' in Ref. @35#. In the present paper, w
derive the next term inAe expansion for above-mentione
surface critical exponents using the fixed-point values up
O(e) @6,7#

u* 523A6e

53
118

110163z~3!

532
e,

v* 54A6e

53
272

19121z~3!

532
e, ~6.2!
06610
:

s
e

to
or

x-

al

o

wherez(3).1.2 020 569 is the Riemannz function, and the
usual geometric factorKd5212dp2d/2/G(d/2) has been ab-
sorbed into the redefinitions of the coupling constants. A
result we obtain

h i52A6e

53
1

756z~3!2641

23532
e,

h'52A 3e

106
1

378z~3!2347

23532
e. ~6.3!

From scaling relations for surface critical exponents andAe
expansions for random bulk exponentsn andh @6,7#, we can
obtain perturbative series expansions for other surface c
cal exponents~see Appendix B!.

As in the case of the preceding section, we perform
Padéanalysis of ourAe expansions ate51. The numerical
values of critical exponents obtained in this way are rep
sented in Table II. It should be noticed that theAe expansion
is not Borel summable@39,40#.

The Pade´ approximants@1/0# for the exponentsh i andh'

reproduce the first-order results obtained by Ohno and Ok
@35#. On the other hand, the other exponents,b1 , g11, and
g1 slightly differ from the previous results@35#

b150.17, g1150.78, g151.26. ~6.4!

The reason is that we calculated our@1/0# estimates directly
from eachAe expansion, while in Ref.@35# they were ob-
tained from the scaling relations using the above-mentio
numerical vales ofh i and h' ~6.3!. In addition we per-
formed the analysis of the corresponding series expans
for surface magnetic shift exponentD1, exponentsd1 and
d11, which give relations between the surface magnetizat
and the surface and bulk external magnetic fields, resp
tively.

Comparing Tables I and II, we find that the values of t
first-order approximants, denoted by@1/0# and@0/1# in both
cases, are of comparable magnitudes. It can be easily ver
that the above first-order approximants of the critical exp
nents satisfy the scaling relation

h'5~h1h i!/2 ~6.5!

with the value of the bulk exponenth52(e/106)1O(e3/2)
@2,3,5#.
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But, on the other hand, the values of the second-or
approximants are significantly different in both tables.
was shown previously@36–40#, Ae series expansions pos
sess rather irregular structure and are practically unsuit
for subsequent resummation and are ineffective for obtain
reliable numerical estimates. Our results confirm this
sumption. If we try to reproduce the numerical value of bu
exponenth @see Eq.~6.5!# from our second-order data o
Table II according to the scaling relations of Eq.~6.5!, we
always obtain negative values. But, this does not agree
the sufficiently precise positive results of massive fie
theoretic approach for random bulk systems in three dim
sions up to two-loop@8,59#, three-loop@60,10,39#, and to
four-loop @61# order. Besides, very recently the valuesh
50.02560.01 andh50.030(3) were obtained, respectivel
in the frames of five-loop @50# and six-loop @47#
renormalization-group expansions. This discrepancy is
present in our calculation performed directly atd53 ~see
Table I!. From the surface scaling relation of Eq.~6.5! and
the second-order results of Table I we always obtain posi
value of critical exponenth, which quite well agree with
previous estimates.

VII. SUMMARY

The main aim of the present paper was an investigatio
the influence of quenched bulk randomness on the sur
critical behavior of semi-infinite Ising-like systems at th
special transition. We have calculated the surface critical
ponents for such systems using two alternative techniq
by the massive field theory directly atd53 dimensions up to
two-loop order, and theAe expansion atd542e dimen-
sions to the order ofO„(Ae)2

…. In the last case we extend u
to the next-to leading order, the previous first-order res
obtained by Ohno and Okabe@35#.

In both cases the resummation of obtained perturba
series expansions for surface critical exponents was
formed using Pade´ analysis. But, theAe expansions posses
rather irregular structure, as was shown in Refs.@39,38,40#.
This makes them practically unsuitable for subsequent P´-
Borel resummation and ineffective for getting reliable qua
titative numerical estimates. However, in the case of the m
sive field theory the resulting two-loop series expansio
could be resummed by means of a more precise Pade´-Borel
resummation technique. In the previous sections, we h
discussed some merits of using the massive field theory
rectly in d53 dimensions for obtaining most reliable n
merical estimates for critical exponents. Thus, the best e
mates for surface critical exponents of semi-infinite syste
with quenched bulk disorder at the special transition, wh
we can obtain in the frames of the present approxima
scheme, are

h i520.238, D151.098, h'520.104, b150.258,

g1150.839, g151.426, d156.521, d1154.249.
~7.1!
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These are evidently different from results obtained for p
semi-infinite Ising-like systems@35,61#

h i520.165, D150.997, h'520.067, b150.263,

g1150.734, g151.302, d155.951, d1153.791,
~7.2!

and show that the presence of quenched bulk disorder aff
the critical behavior of the boundary surface. So, in the c
of special surface transition, similarly as in the case of p
viously investigated ordinary transition@34#, a new set of
surface critical exponents appear. It should be mentioned
at the present time the investigation of the crossover p
nomenon from ordinary to special surface transition for su
kinds of semi-infinite systems with quenched bulk disorde
still an open question. This problem will be the topic of o
next publication.
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APPENDIX A

As was mentioned above, the power series expansion
critical exponents@see Eq.~5.3!# are in general not conver
gent. In order to obtain meaningful and rather accur
numerical estimates we must apply to them sufficiently po
erful ‘‘resummation’’ procedure. In the present paper we e
ploy a two-variable resummation technique@8,60,10,61,59#
that is a simple generalization of the single-variable Pa´-
Borel method. The starting point of this calculation is
construct a Borel transform for truncated power series
Eq. ~5.3!

F~ut,vt !5 (
j ,l>o

f j l

~ j 1 l !!
~ut! j~vt ! l . ~A1!

Then we construct the rational approximantFB(x,y),

FB~u,v !5
11a10u1a01v1a11uv

11b10u1b01v
, ~A2!

which is the extrapolation of the Borel transform~A1!. It is
clear that atu50 or v50 we obtain from Eq.~A2! the usual
@1/1# Padéapproximant. The coefficientsajl andbjl are ex-
pressed as expansion coefficients off (u,v) in Eq. ~5.3!

a105g101b10, b1052g20/g10,

a015g011b01, b0152g02/g01,

a115g111b10g011b01g10, ~A3!

where gjl 5 f j l /( j 1 l )!. Hence, for the resummed functio
by means of the Pade´-Borel resummation technique we ob
tain

f̄ ~u,v !5E
0

`

FB~ut,vt !e2tdt. ~A4!
3-7



r
rre

ri

Z. USATENKO AND CHIN-KUN HU PHYSICAL REVIEW E65 066103
This technique has been applied to the inverse power se
expansions of surface critical exponents to find the co
sponding Pade´-Borel approximantsR21.

APPENDIX B

The perturbation series expansions of other surface c
cal exponents up toO„(Ae)2

… order can be obtained from
scaling relations of Eq.~5.1! and are given by

D15
3

4
1

5

8
A6e

53
1

352323780z~3!

163532
e,

b15
1

4
2

1

8
A6e

53
1

3

16

@252z~3!2461#

532
e,
er
o

-

t

lk
s

06610
ies
-

ti-

g115
1

2
1

3

4
A6e

53
2

2268z~3!22453

83532
e,

g1511
3

4
A6e

53
2

3

4

@378z~3!2347#

532
e,

d15515A6e

53
23

@630z~3!21073#

532
e,

d115314A6e

53
22

@756z~3!21277#

532
e. ~B1!
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